最简洁的Python时间序列可视化实现

论坛 期权论坛 期权     
挖地兔   2019-7-8 05:52   4799   0



TUSHARE  金融与技术学习兴趣小组

翻译整理、编辑 | 一只小绿怪兽

译者简介:北京第二外国语学院国际商务专业研一在读,目前在学习Python编程和量化投资相关知识。


作者:DataCamp



时间序列数据在数据科学领域无处不在,在量化金融领域也十分常见,可以用于分析价格趋势,预测价格,探索价格行为等。




学会对时间序列数据进行可视化,能够帮助我们更加直观地探索时间序列数据,寻找其潜在的规律。




本文会利用Python中的matplotlib【1】库,并配合实例进行讲解。matplotlib库是个于创建出版质量图表的桌绘图包(2D绘图库),是Python中最基本的可视化工具。




【工具】Python 3
【数据】Tushare
【注】示例注重的是方法的讲解,请大家灵活掌握。





01

单个时间序列



首先,我们从tushare.pro获取指数日线行情数据,并查看数据类型。

  1. import tushare as tsimport pandas as pdpd.set_option('expand_frame_repr', False)  # 显示所有列ts.set_token('your token')pro = ts.pro_api()df = pro.index_daily(ts_code='399300.SZ')[['trade_date', 'close']]df.sort_values('trade_date', inplace=True) df.reset_index(inplace=True, drop=True)print(df.head())  trade_date    close0   20050104  982.7941   20050105  992.5642   20050106  983.1743   20050107  983.9584   20050110  993.879print(df.dtypes)trade_date     objectclose         float64dtype: object
复制代码

交易时间列'trade_date' 不是时间类型,而且也不是索引,需要先进行转化。

  1. df['trade_date'] = pd.to_datetime(df['trade_date'])df.set_index('trade_date', inplace=True)print(df.head())              closetrade_date         2005-01-04  982.7942005-01-05  992.5642005-01-06  983.1742005-01-07  983.9582005-01-10  993.879
复制代码

接下来,就可以开始画图了,我们需要导入matplotlib.pyplot【2】,然后通过设置set_xlabel()set_xlabel()为x轴和y轴添加标签。

  1. import matplotlib.pyplot as pltax = df.plot(color='')ax.set_xlabel('trade_date')ax.set_ylabel('399300.SZ close')plt.show()
复制代码




matplotlib库中有很多内置图表样式可以选择,通过打印plt.style.available查看具体都有哪些选项,应用的时候直接调用plt.style.use('fivethirtyeight')即可。

  1. print(plt.style.available)['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', 'tableau-colorblind10', '_classic_test']plt.style.use('fivethirtyeight')ax1 = df.plot()ax1.set_title('FiveThirtyEight Style')plt.show()
复制代码





02

设置更多细节


上面画出的是一个很简单的折线图,其实可以在plot()里面通过设置不同参数的值,为图添加更多细节,使其更美观、清晰。


figsize(width, height)设置图的大小,linewidth设置线的宽度,fontsize设置字体大小。然后,调用set_title()方法设置标题。

  1. ax = df.plot(color='blue', figsize=(8, 3), linewidth=2, fontsize=6)ax.set_title('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8)plt.show()
复制代码




如果想要看某一个子时间段内的折线变化情况,可以直接截取该时间段再作图即可,如df['2018-01-01': '2019-01-01']

  1. df_subset_1 = df['2018-01-01':'2019-01-01']ax = df_subset_1.plot(color='blue', fontsize=10)plt.show()
复制代码




如果想要突出图中的某一日期或者观察值,可以调用.axvline()和.axhline()方法添加垂直和水平参考线。

  1. ax = df.plot(color='blue', fontsize=6)ax.axvline('2019-01-01', color='red', linestyle='--')ax.axhline(3000, color='green', linestyle='--')plt.show()
复制代码



也可以调用axvspan()的方法为一段时间添加阴影标注,其中alpha参数设置的是阴影的透明度,0代表完全透明,1代表全色。

  1. ax = df.plot(color='blue', fontsize=6)ax.axvspan('2018-01-01', '2019-01-01', color='red', alpha=0.3)ax.axhspan(2000, 3000, color='green', alpha=0.7)plt.show()
复制代码





03

移动平均时间序列


有时候,我们想要观察某个窗口期的移动平均值的变化趋势,可以通过调用窗口函数rolling来实现。下面实例中显示的是,以250天为窗口期的移动平均线close,以及与移动标准差的关系构建的上下两个通道线upper和lower。

  1. ma = df.rolling(window=250).mean()mstd = df.rolling(window=250).std()ma['upper'] = ma['close'] + (mstd['close'] * 2)ma['lower'] = ma['close'] - (mstd['close'] * 2)ax = ma.plot(linewidth=0.8, fontsize=6)ax.set_xlabel('trade_date', fontsize=8)ax.set_ylabel('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8)ax.set_title('Rolling mean and variance of 399300.SZ cloe from 2005-01-04 to 2019-07-04', fontsize=10)plt.show()
复制代码




04

多个时间序列


如果想要可视化多个时间序列数据,同样可以直接调用plot()方法。示例中我们从tushare.pro上面选取三只股票的日线行情数据进行分析。

  1. # 获取数据code_list = ['000001.SZ', '000002.SZ', '600000.SH']data_list = []for code in code_list:    print(code)    df = pro.daily(ts_code=code, start_date='20180101', end_date='20190101')[['trade_date', 'close']]    df.sort_values('trade_date', inplace=True)    df.rename(columns={'close': code}, inplace=True)    df.set_index('trade_date', inplace=True)    data_list.append(df)df = pd.concat(data_list, axis=1)print(df.head())000001.SZ000002.SZ600000.SH            000001.SZ  000002.SZ  600000.SHtrade_date                                 20180102        13.70      32.56      12.7220180103        13.33      32.33      12.6620180104        13.25      33.12      12.6620180105        13.30      34.76      12.6920180108        12.96      35.99      12.68# 画图ax = df.plot(linewidth=2, fontsize=12)ax.set_xlabel('trade_date')ax.legend(fontsize=15)plt.show()
复制代码



调用.plot.area()方法可以生成时间序列数据的面积图,显示累计的总数。

  1. ax = df.plot.area(fontsize=12)ax.set_xlabel('trade_date')ax.legend(fontsize=15)plt.show()
复制代码




如果想要在不同子图中单独显示每一个时间序列,可以通过设置参数subplots=True来实现。layout指定要使用的行列数,sharex和sharey用于设置是否共享行和列,colormap='viridis' 为每条线设置不同的颜色。

  1. df.plot(subplots=True,          layout=(2, 2),          sharex=False,          sharey=False,          colormap='viridis',          fontsize=7,          legend=False,          linewidth=0.3)plt.show()
复制代码





05

总结


本文主要介绍了如何利用Python中的matplotlib库对时间序列数据进行一些简单的可视化操作,包括可视化单个时间序列并设置图中的细节,可视化移动平均时间序列和多个时间序列。

相关的官方文档和参考资料已附下面,感兴趣的话可以自行查阅更多内容!




END

更多内容请关注“挖地兔”公众号。


【参考链接】https://matplotlib.org/【1】
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot【2】
https://www.datacamp.com/courses/visualizing-time-series-data-in-python【Datacamp】
【扩展阅读】Pandas必备技能之“分组聚合操作”
Pandas必备技能之“花式拼接表格”
Pandas必备技能之“时间序列数据处理”
Python+SQL无敌组合,值得你Pick!
如何正确使用Pandas库提升项目的运行速度?
分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:10
帖子:2
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP