MyBatis中使用缓存来提高其性能。
MyBatis中的缓存分为两种:一级缓存和二级缓存。使用过MyBatis的可能听到过这样一句话“一级缓存是sqlSession级别的,二级缓存是mapper级别的”。这也说明了,当使用同一个sqlSession时,查询到的数据可能是一级缓存;而当使用同一个mapper是,查询到的数据可能是二级缓存。
MyBatis中的一级缓存
执行查询时,SqlSession是将任务交给Executor来完成对数据库的各种操作,而Executor执行查询前,会先去查询缓存。
Executor的实现类BaseExecutor.query方法源码
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
//动态的生成需要执行的sql语句,用BoundSql对象表示
BoundSql boundSql = ms.getBoundSql(parameter);
//获取一级缓存的key
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
@SuppressWarnings("unchecked")
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
if (queryStack == 0 && ms.isFlushCacheRequired()) {
//清空一级缓存
clearLocalCache();
}
List<E> list;
try {
queryStack++;
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
//缓存为空则去数据库查询
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
} finally {
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
// issue #601
deferredLoads.clear();
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
// issue #482
clearLocalCache();
}
}
return list;
}

PerpetualCache是如何实现对缓存的维护的?
public class PerpetualCache implements Cache {
private String id;
//使用一个Map对象,作为缓存内容的容器
private Map<Object, Object> cache = new HashMap<Object, Object>();
public PerpetualCache(String id) {
this.id = id;
}
public String getId() {
return id;
}
public int getSize() {
return cache.size();
}
public void putObject(Object key, Object value) {
cache.put(key, value);
}
public Object getObject(Object key) {
return cache.get(key);
}
public Object removeObject(Object key) {
return cache.remove(key);
}
public void clear() {
cache.clear();
}
public ReadWriteLock getReadWriteLock() {
return null;
}
public boolean equals(Object o) {
if (getId() == null) throw new CacheException("Cache instances require an ID.");
if (this == o) return true;
if (!(o instanceof Cache)) return false;
Cache otherCache = (Cache) o;
return getId().equals(otherCache.getId());
}
public int hashCode() {
if (getId() == null) throw new CacheException("Cache instances require an ID.");
return getId().hashCode();
}
}
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameter);
//创建cacheKey。
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) throw new ExecutorException("Executor was closed.");
CacheKey cacheKey = new CacheKey();
//获得statementId
cacheKey.update(ms.getId());
//获得rowBounds.offset
cacheKey.update(rowBounds.getOffset());
//获得rowBounds.Limit()
cacheKey.update(rowBounds.getLimit());
//获得boundSql.ql()
cacheKey.update(boundSql.getSql());
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
for (int i = 0; i < parameterMappings.size(); i++) { // mimic DefaultParameterHandler logic
ParameterMapping parameterMapping = parameterMappings.get(i);
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
cacheKey.update(value);
}
}
return cacheKey;
}
此时进入update方法:
public void update(Object object) {
if (object != null && object.getClass().isArray()) {
int length = Array.getLength(object);
for (int i = 0; i < length; i++) {
Object element = Array.get(object, i);
doUpdate(element);
}
} else {
doUpdate(object);
}
}
private void doUpdate(Object object) {
int baseHashCode = object == null ? 1 : object.hashCode();
count++;
checksum += baseHashCode;
baseHashCode *= count;
//产生hashcode
hashcode = multiplier * hashcode + baseHashCode;
updateList.add(object);
}
到这里,cacheKey的构建终于真相大白:根据 statementId 、 rowBounds 、传递给JDBC的SQL 和 rowBounds.limit决定key中的hashcode。因此,相同的操作就会有相同的hashcode,来保证一个cacheKey对应一个操作。
MyBatis二级缓存