一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2 输出:2
示例 2:
输入:n = 7 输出:21
提示:
0 <= n <= 100
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路1:递推(dp)
直接按照递归来推算就可以了:关系式为:f(n) = f(n-1) + f(n-2), 所以只要知道f(1), f(2)的,那么后面的就都可以推算出来。
写法1:
class Solution:
def numWays(self, n: int) -> int:
# f(n) = f(n-1) + f(n-2)
# f(1) = 1, f(2) = 2
if n == 0:
return 1
elif n == 1:
return 1
elif n == 2:
return 2
dp = [0] * (n+1)
dp[1] = 1
dp[2] = 2
for i in range(3, n+1):
dp[i] = (dp[i-1] + dp[i-2]) % 1000000007
return dp[n]
写法二:
class Solution:
def numWays(self, n: int) -> int:
# f(n) = f(n-1) + f(n-2)
# f(0) = 1, f(1) = 1, f(2) = 2
a = 1 # n = 0
b = 1 # n = 1
for i in range(2,n+1):
a, b = b, (a + b) % 1000000007
return b
思路2:递归(记忆数组)
python 超时!
class Solution:
def numWays(self, n: int) -> int:
# f(n) = f(n-1) + f(n-2)
# f(0) = 1, f(1) = 1, f(2) = 2
self.dp = [0] * (n+1)
self.dp[0] = 1
self.dp[1] = 1
return self.f(n)
def f(self, n):
if self.dp[n] != 0:
return self.dp[n]
return self.f(n-1) + self.f(n-2)
|