HDU 4983 Goffi and GCD
思路:数论题,如果k为2和n为1,那么只可能1种,其他的k > 2就是0种,那么其实只要考虑k = 1的情况了,k = 1的时候,枚举n的因子,然后等于求该因子满足的个数,那么gcd(x, n) = 该因子的个数为phi(n / 该因子),然后再利用乘法原理计算即可
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
typedef long long ll;
const ll MOD = 1000000007;
const int N = 35333;
ll n, k, pn, vis[N];
ll prime[N], frc[N], fn, cnt[N];
void getprime() {
pn = 0;
for (ll i = 2; i < N; i++) {
if (vis[i]) continue;
prime[pn++] = i;
for (ll j = i * i; j < N; j += i)
vis[j] = 1;
}
}
void getfrc(ll n) {
fn = 0;
for (ll i = 0; i < pn && n >= prime[i]; i++) {
if (n % prime[i] == 0) {
frc[fn] = prime[i];
cnt[fn] = 0;
while (n % prime[i] == 0) {
cnt[fn]++;
n /= prime[i];
}
fn++;
}
}
if (n != 1) {
frc[fn] = n;
cnt[fn++] = 1;
}
}
ll ans = 0;
ll phi(ll n) {
ll m = (ll)sqrt(n * 1.0);
ll ans = n;
for (ll i = 2; i <= m; i++) {
if (n % i == 0) {
ans = ans / i * (i - 1);
while (n % i == 0) n /= i;
}
}
if (n > 1) ans = ans / n * (n - 1);
return ans;
}
void dfs(ll u, ll sum) {
if (u == fn) {
ll r = n / sum;
ans = (phi(n / sum) * phi(sum) % MOD + ans) % MOD;
return;
}
for (ll i = 0; i <= cnt[u]; i++) {
dfs(u + 1, sum);
sum *= frc[u];
}
}
ll solve() {
getfrc(n);
ans = 0;
dfs(0, 1);
return ans;
}
int main() {
getprime();
while (~scanf("%I64d%I64d", &n, &k)) {
if (n == 1) printf("1\n");
else if (k == 2) printf("1\n");
else if (k > 2) printf("0\n");
else {
printf("%I64d\n", solve());
}
}
return 0;
}
|