前言:
本文主要介绍 ARIMA 及其模型融合 ARIMA-ANN。由于目前对ARIMA还不是很熟悉,先占个坑位,后续有深入学习,再继续完善,望见谅。
Part1:ARIMA
基本概念
-
ARIMA:Auto Regressive Integrated Moving Average。
-
ARIMA(p,d,q),其中:d 是差分的阶数,用来得到平稳序列;AR是自回归,p(时序数据本身的滞后数)为相应的自回归项;MA为移动平均,q(预测误差的滞后数)为相应的移动平均项数。
-
模型的输入:历史数据;模型的输出:预测数据;- -
特点
ARIMA 模型的基本流程
-
数据可视化,根据历史数据判断时间序列的平稳性。
-
对非平稳的时间序列数据,做差分(d),得到平稳序列。
-
建立合适的模型: - 平稳化处理后,若偏自相关函数是截尾的,而自相关函数是拖尾的,则建立AR模型; - 若偏自相关函数是拖尾的,而自相关函数是截尾的,则建立MA模型; - 若偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
-
模型的阶数在确定之后,对ARMA模型进行参数估计,比较常用是最小二乘法进行参数估计。
-
假设检验,判断残差序列是否为白噪声序列。
-
利用已通过检验的模型进行预测。
Reference
Part2:ARIMA-ANN
Panigrahi S, Behera H S, Abraham A. A Fuzzy Filter Based Hybrid ARIMA-ANN Model for Time Series Forecasting[J]. 2013.
摘要:
-
ARIMA:linear model for economic time series forecasting;
-
ANNs:capture the complex economic relationships with a variety of patterns;
-
Integrating the advantages of ARIMA and ANNs in modeling the linear and nonlinear behaviors;
ARIMA 的优缺点:
-
ARIMA适合处理具有线性相关的时间序列:It assumed that there exists a linear correlation structure among the time series values.
-
现实生活中的时间序列往往是非线性的关系,而ARIMA处理类似的非线性时间序列的效果往往不佳。
-
ACF:atuocorrelation function;
-
PACF:partial atuocorrelation function;
ANNs 的优缺点:
-
ANNs can function in simple pattern recognition and can be applied to a wide range of application areas
-
ANNs mapping process can cover problems of a greater range of complexity as well as they are superior to other approaches with their powerful, fl exible and easy operation;
-
1)one of the major advantages of NNs:flexible of modeling nonlinear situations;
-
2)NNs model is constructed adaptively based on the features manifested in the data;
模型融合(ARIMA-ANN):
-
Makridakis et al. (1982) 表示:对于著名的“M-competetion”问题,融合更多的模型能够提升预测性能;
-
Both theoretical and empirical findings suggest that combining different methods is an effective and effi cient way to improve forecasting performance (Palm and Zellner, 1992; Pelikan et al., 1992;
-
Wang and Leu (1996) put forward a hybrid model to forecast the mid-term price trend of the Taiwan stock exchange weighted stock index, which was a recurrent neural network trained by features extracted from ARIMA analyses. (ARIMA提取特征,然后给RNN训练?)
-
大部分融合模型都使用了ANNs;
ARIMA-ANN:
-
ARIMA、ANNs:non-parameteric techniques;similar in attempting to make appropriate internal representations of time series data;
-
已有研究证明:融合ARIMA和ANNs能够取得更好地效果;(Kohza di et al., 1996; ElKateb et al. , 1998; Ho et al., 2002)
预测模型的评价指标:
论文中实验的数据集:
-
the Wolf's sunspot data
-
the Canadian lynx data
-
the IBM stock price data
实现代码:
https://github.com/Kanav123/ArimaAnnHybrid |