海量日志实时收集系统架构设计与go语言实现

论坛 期权论坛 脚本     
匿名网站用户   2020-12-20 22:19   11   0

日志收集系统应该说是到达一定规模的公司的标配了,一个能满足业务需求、运维成本低、稳定的日志收集系统对于运维的同学和日志使用方的同学都是非常nice的。然而这时理想中的日志收集系统,现实往往不是这样的...本篇的主要内容是:首先吐槽一下公司以前的日志收集和上传;介绍新的实时日志收集系统架构;用go语言实现。澄清一下,并不是用go语言实现全部,比如用到卡夫卡肯定不能重写一个kafka吧...

logagent所有代码已上传到github:https://github.com/zingp/logagent。

1 老系统吐槽

我司以前的日志收集系统概述如下:

日志收集的频率有每小时收集一次、每5分钟收集一次、实时收集三种。大部分情况是每小时收集上传一次。
(1)每5分钟上传一次和每小时上传一次的情况是这样的:
每台机器上都需要部署一个日志收集agengt,部署一个日志上传agent,每台机器都需要挂载hadoop集群的客户端。
日志收集agent负责切割日志,上传agent整点的时候启动利用hadoop客户端,将切割好的前1小时或前5分钟日志打包上传到hadoop集群。
(2)实时传输的情况是这样的
每台机器上部署另一个agent,该agent实时收集日志传输到kafka。

看到这里你可能都看不下去了,这么复杂臃肿费劲的日志收集系统是怎么设计出来的?额...先辩解一下,这套系统有4年以上的历史了,当时的解决方案确实有限。辩解完之后还是得吐槽一下系统存在的问题:
(1)首先部署在每台机器上的agent没有做统一的配置入口,需要根据不同业务到不同机器上配置,运维成本太大;十台机器也就罢了,问题是现在有几万台机器,几千个服务。
(2)最无语的是针对不同的hadoop集群,需要挂载多个hadoop客户端,也就是存在一台机器上部署几个hadoop客户端的情况。运维成本太大...
(3)没做限流,整点的时候传输压力变大。某些机器有很多日志,一到整点压力就上来了。无图无真相,我们来看下:

CPU:看绿色的线条

负载:

网卡:

这组机器比较典型(这就是前文说的有多个hadoop客户端的情况),截图是凌晨至上午的时间段,还未到真正的高峰期。不过总体上可看出整点的压力是明显比非正点高很多的,已经到了不能忍的地步。

(4)省略n条吐槽...

2 新系统架构

首先日志收集大可不必在客户端分为1小时、5分钟、实时这几种频率,只需要实时一种就能满足前面三种需求。

其次可以砍掉在机器上挂载hadoop客户端,放在其他地方做日志上传hadoop流程。

第三,做统一的配置管理系统,提供友好的web界面,用户只需要在web界面上配置一组service需要收集的日志,便可通知该组service下的所有机器上的日志收集agent。

第四,流量削峰。应该说实时收集可以避免旧系统整点负载过大情况,但依旧应该做限流功能,防止高峰期agent过度消耗资源影响业务。

第五,日志补传...

实际上公司有的部门在用flume做日志收集,但觉得太重。经过一段时间调研和结合自身业务特点,利用开源软件在适当做些开发会比较好。go应该擅长做这个事,而且方便运维。好了,附上架构图。

将用go实现logagent,Web,transfer这个三个部分。

logagent主要负责按照配置实时收集日志发送到kafka,此外还需watch etcd中的配置,如改变,需要热更新。

web部分主要用于更新etcd中的配置,etcd已提供接口,我们只需要集成到资源管理系统或CMDB系统的管理界面中去即可。

transfer 做的是消费kafka队列中的日志,发送到es/hadoop/storm中去。

3 实现logagent

3.1 配置设计

首先思考下logagent的配置文件内容:

etcd_addr = 10.134.123.183:2379         # etcd 地址
etcd_timeout = 5                        # 连接etcd超时时间
etcd_watch_key = /logagent/%s/logconfig    # etcd key 格式

kafka_addr = 10.134.123.183:9092           # 卡夫卡地址

thread_num = 4                             # 线程数
log = ./log/logagent.log                   # agent的日志文件
level = debug                              # 日志级别

# 监听哪些日志,日志限流大小,发送到卡夫卡的哪个topic  这个部分可以放到etcd中去。 

如上所说,监听哪些日志,日志限流大小,发送到卡夫卡的哪个topic 这个部分可以放到etcd中去。etcd中存储的value格式设计如下:

`[
 {
 "service":"test_service",        
 "log_path": "/search/nginx/logs/ping-android.shouji.sogou.com_access_log",   "topic": "nginx_log",
 "send_rate": 1000
 },
 {
 "service":"srv.android.shouji.sogou.com",
 "log_path": "/search/nginx/logs/srv.android.shouji.sogou.com_access_log","topic": "nginx_log",
 "send_rate": 2000
 }
]`

    - "service":"服务名称",        
    - "log_path": "应该监听的日志文件",   
    - "topic": "kfk topic",
    - "send_rate": "日志条数限制"  

其实可以将更多的配置放入etcd中,根据自身业务情况可自行定义,本次就做如此设计,接下来可以写解析配置文件的代码了。

config.go

package main

import (
 "fmt"
 "github.com/astaxie/beego/config"
)

type AppConfig struct {
 EtcdAddr     string
 EtcdTimeOut  int
 EtcdWatchKey string

 KafkaAddr string

 ThreadNum int
 LogFile   string
 LogLevel  string
}

var appConf = &AppConfig{}

func initConfig(file string) (err error) {
 conf, err := config.NewConfig("ini", file)
 if err != nil {
  fmt.Println("new config failed, err:", err)
  return
 }
 appConf.EtcdAddr = conf.String("etcd_addr")
 appConf.EtcdTimeOut = conf.DefaultInt("etcd_timeout", 5)
 appConf.EtcdWatchKey = conf.String("etcd_watch_key")

 appConf.KafkaAddr = conf.String("kafka_addr")

 appConf.ThreadNum = conf.DefaultInt("thread_num", 4)
 appConf.LogFile = conf.String("log")
 appConf.LogLevel = conf.String("level")
 return
} 

代码主要定义了一个AppConf结构体,然后读取配置文件,存放到结构体中。

此外,还有部分配置在etcd中,需要做两件事,第一次启动程序时将配置从etcd拉取下来;然后启动一个协程去watch etcd中的配置是否更改,如果更改需要拉取并更新到内存中。代码如下:

etcd.go:

package main

import (
 "context"
 "fmt"
 "sync"
 "time"

 "github.com/astaxie/beego/logs"
 client "github.com/coreos/etcd/clientv3"
)

var (
 confChan  = make(chan string, 10)
 cli       *client.Client
 waitGroup sync.WaitGroup
)

func initEtcd(addr []string, keyFormat string, timeout time.Duration) (err error) {
 // init a global var cli and can not close
 cli, err = client.New(client.Config{
  Endpoints:   addr,
  DialTimeout: timeout,
 })
 if err != nil {
  fmt.Println("connect etcd error:", err)
  return
 }
 logs.Debug("init etcd success")
 // defer cli.Close()   //can not close

 var etcdKeys []string
 ips, err := getLocalIP()
 if err != nil {
  fmt.Println("get local ip error:", err)
  return
 }
 for _, ip := range ips {
  key := fmt.Sprintf(keyFormat, ip)
  etcdKeys = append(etcdKeys, key)
 }

 // first, pull conf from etcd
 for _, key := range etcdKeys {
  ctx, cancel := context.WithTimeout(context.Background(), time.Second)
  resp, err := cli.Get(ctx, key)
  cancel()
  if err != nil {
   fmt.Println("get etcd key failed, error:", err)
   continue
  }

  for _, ev := range resp.Kvs {
   // return result is not string
   confChan <- string(ev.Value)
   fmt.Printf("etcd key = %s , etcd value = %s", ev.Key, ev.Value)
  }
 }

 waitGroup.Add(1)
 // second, start a goroutine to watch etcd
 go etcdWatch(etcdKeys)
 return
}

// watch etcd
func etcdWatch(keys []string) {
 defer waitGroup.Done()

 var watchChans []client.WatchChan
 for _, key := range keys {
  rch := cli.Watch(context.Background(), key)
  watchChans = append(watchChans, rch)
 }

 for {
  for _, watchC := range watchChans {
   select {
   case wresp := <-watchC:
    for _, ev := range wresp.Events {
     confChan <- string(ev.Kv.Value)
     logs.Debug("etcd key = %s , etcd value = %s", ev.Kv.Key, ev.Kv.Value)
    }
   default:
   }
  }
  time.Sleep(time.Second)
 }
}

//GetEtcdConfChan is func get etcd conf add to chan
func GetEtcdConfChan() chan string {
 return confChan
}  

其中,有一个比较个性化的设计,就是一台主机对应的etcd 中的key我们设置成/logagent/本机ip/logconfig的格式,因此还需要一个获取本机IP的功能,注意一台机器可能存在多个IP。

ip.go:

package main

import (
 "fmt"
 "net"
)

// var a slice for ip addr
var ipArray []string

func getLocalIP() (ips []string, err error) {
 ifaces, err := net.Interfaces()
 if err != nil {
  fmt.Println("get ip interfaces error:", err)
  return
 }

 for _, i := range ifaces {
  addrs, errRet := i.Addrs()
  if errRet != nil {
   continue
  }

  for _, addr := range addrs {
   var ip net.IP
   switch v := addr.(type) {
   case *net.IPNet:
    ip = v.IP
    if ip.IsGlobalUnicast() {
     ips = append(ips, ip.String())
    }
   }
  }
 }
 return
}

3.2 初始化kafka

初始化kafka很简单,就是创建kafka实例,提供发送日志功能。只不过发送是并发的。

package main

import (
 "fmt"
 "github.com/Shopify/sarama"
 "github.com/astaxie/beego/logs"
)

var kafkaSend = &KafkaSend{}

type Message struct {
 line  string
 topic string
}

type KafkaSend struct {
 client   sarama.SyncProducer
 lineChan chan *Message
}

func initKafka(kafkaAddr string, threadNum int) (err error) {
 kafkaSend, err = NewKafkaSend(kafkaAddr, threadNum)
 return
}

// NewKafkaSend is 
func NewKafkaSend(kafkaAddr string, threadNum int) (kafka *KafkaSend, err error) {
 kafka = &KafkaSend{
  lineChan: make(chan *Message, 10000),
 }

 config := sarama.NewConfig()
 config.Producer.RequiredAcks = sarama.WaitForAll          // wait kafka ack
 config.Producer.Partitioner = sarama.NewRandomPartitioner // random partition
 config.Producer.Return.Successes = true

 client, err := sarama.NewSyncProducer([]string{kafkaAddr}, config)
 if err != nil {
  logs.Error("init kafka client err: %v", err)
  return
 }
 kafka.client = client

 for i := 0; i < threadNum; i++ {
  fmt.Println("start to send kfk")
  waitGroup.Add(1)
  go kafka.sendMsgToKfk()
 }
 return
}

func (k *KafkaSend) sendMsgToKfk() {
 defer waitGroup.Done()

 for v := range k.lineChan {
  msg := &sarama.ProducerMessage{}
  msg.Topic = v.topic
  msg.Value = sarama.StringEncoder(v.line)

  _, _, err := k.client.SendMessage(msg)
  if err != nil {
   logs.Error("send massage to kafka error: %v", err)
   return
  }
 }
}

func (k *KafkaSend) addMessage(line string, topic string) (err error) {
 k.lineChan <- &Message{line: line, topic: topic}
 return
}

3.3 实时读取日志,发送到kafka

用到第三方包:"github.com/hpcloud/tail"。将每个监听的日志,都抽象成一个对象。
package main

import (
 "encoding/json"
 "fmt"
 "strings"
 "sync"

 "github.com/astaxie/beego/logs"
 "github.com/hpcloud/tail"
)

// TailObj is TailMgr's instance
type TailObj struct {
 tail     *tail.Tail
 offset   int64
 logConf  LogConfig
 secLimit *SecondLimit
 exitChan chan bool
}

var tailMgr *TailMgr

//TailMgr to manage tailObj
type TailMgr struct {
 tailObjMap map[string]*TailObj
 lock       sync.Mutex
}

// NewTailMgr init TailMgr obj
func NewTailMgr() *TailMgr {
 return &TailMgr{
  tailObjMap: make(map[string]*TailObj, 16),
 }
}

//AddLogFile to Add tail obj
func (t *TailMgr) AddLogFile(conf LogConfig) (err error) {
 t.lock.Lock()
 defer t.lock.Unlock()

 _, ok := t.tailObjMap[conf.LogPath]
 if ok {
  err = fmt.Errorf("duplicate filename:%s", conf.LogPath)
  return
 }

 tail, err := tail.TailFile(conf.LogPath, tail.Config{
  ReOpen:    true,
  Follow:    true,
  Location:  &tail.SeekInfo{Offset: 0, Whence: 2}, // read to tail
  MustExist: false,  //file does not exist, it does not return an error 
  Poll:      true,
 })
 if err != nil {
  fmt.Println("tail file err:", err)
  return
 }

 tailObj := &TailObj{
  tail:     tail,
  offset:   0,
  logConf:  conf,
  secLimit: NewSecondLimit(int32(conf.SendRate)),
  exitChan: make(chan bool, 1),
 }
 t.tailObjMap[conf.LogPath] = tailObj

 waitGroup.Add(1)
 go tailObj.readLog()
 return
}

func (t *TailMgr) reloadConfig(logConfArr []LogConfig) (err error) {
 for _, conf := range logConfArr {
  tailObj, ok := t.tailObjMap[conf.LogPath]
  if !ok {
   err = t.AddLogFile(conf)
   if err != nil {
    logs.Error("add log file failed:%v", err)
    continue
   }
   continue
  }
  tailObj.logConf = conf
  tailObj.secLimit.limit = int32(conf.SendRate)
  t.tailObjMap[conf.LogPath] = tailObj
 }

 for key, tailObj := range t.tailObjMap {
  var found = false
  for _, newValue := range logConfArr {
   if key == newValue.LogPath {
    found = true
    break
   }
  }
  if found == false {
   logs.Warn("log path :%s is remove", key)
   tailObj.exitChan <- true
   delete(t.tailObjMap, key)
  }
 }
 return
}

// Process hava two func get new log conf and reload conf
func (t *TailMgr) Process() {
 for conf := range GetEtcdConfChan() {
  logs.Debug("log conf: %v", conf)

  var logConfArr []LogConfig
  err := json.Unmarshal([]byte(conf), &logConfArr)
  if err != nil {
   logs.Error("unmarshal failed, err: %v conf :%s", err, conf)
   continue
  }

  err = t.reloadConfig(logConfArr)
  if err != nil {
   logs.Error("reload config from etcd failed: %v", err)
   continue
  }
  logs.Debug("reload config from etcd success")
 }
}

func (t *TailObj) readLog() {

 for line := range t.tail.Lines {
  if line.Err != nil {
   logs.Error("read line error:%v ", line.Err)
   continue
  }

  lineStr := strings.TrimSpace(line.Text)
  if len(lineStr) == 0 || lineStr[0] == '\n' {
   continue
  }

  kafkaSend.addMessage(line.Text, t.logConf.Topic)
  t.secLimit.Add(1)
  t.secLimit.Wait()

  select {
  case <-t.exitChan:
   logs.Warn("tail obj is exited: config:", t.logConf)
   return
  default:
  }
 }
 waitGroup.Done()
}

func runServer() {
 tailMgr = NewTailMgr()
 tailMgr.Process()
 waitGroup.Wait()
} 

此处设计了一个限流功能,逻辑大概如下:设置阈值A,如阈值为1000条,如果这秒钟已经发送1000条,那么这一秒剩下的时间就sleep。limit.go代码如下:

package main

import (
 "sync/atomic"
 "time"

 "github.com/astaxie/beego/logs"
)
// SecondLimit to limit num in one second
type SecondLimit struct {
 unixSecond int64
 curCount   int32
 limit      int32
}

// NewSecondLimit to init a SecondLimit obj
func NewSecondLimit(limit int32) *SecondLimit {
 secLimit := &SecondLimit{
  unixSecond: time.Now().Unix(),
  curCount:   0,
  limit:      limit,
 }

 return secLimit
}

// Add is func to 
func (s *SecondLimit) Add(count int) {
 sec := time.Now().Unix()
 if sec == s.unixSecond {
  atomic.AddInt32(&s.curCount, int32(count))
  return
 }

 atomic.StoreInt64(&s.unixSecond, sec)
 atomic.StoreInt32(&s.curCount, int32(count))
}

// Wait to limit num
func (s *SecondLimit) Wait() bool {
 for {
  sec := time.Now().Unix()
  if (sec == atomic.LoadInt64(&s.unixSecond)) && s.curCount >= s.limit {
   time.Sleep(time.Millisecond)
   logs.Debug("limit is runing, limit: %d s.curCount:%d", s.limit, s.curCount)
   continue
  }

  if sec != atomic.LoadInt64(&s.unixSecond) {
   atomic.StoreInt64(&s.unixSecond, sec)
   atomic.StoreInt32(&s.curCount, 0)
  }
  logs.Debug("limit is exited")
  return false
 }
}

此外,写日志的代码非主要代码,这里就不介绍了。所有代码均上传到github上,如有兴趣可前去clone,地址已经在文章开头处给出。

transfer将在下一篇文章中介绍。文中涉及kafka,etcd等搭建,可参考官网搭建单机版用于测试。

 

  

 

 

分享到 :
0 人收藏
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

积分:1136255
帖子:227251
精华:0
期权论坛 期权论坛
发布
内容

下载期权论坛手机APP