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Abstract

In this chapter, we introduce the definitions of Greek letters. We also provide the 

derivations of Greek letters for call and put options on both dividends-paying stock and 

non-dividends stock. Then we discuss some applications of Greek letters. Finally, we 

show the relationship between Greek letters, one of the examples can be seen from the 

Black-Scholes partial differential equation.
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30.1 Introduction

“Greek letters” are defined as the sensitivities of the option price to a single-unit change 

in the value of either a state variable or a parameter. Such sensitivities can represent the 

different dimensions to the risk in an option. Financial institutions who sell option to their 

clients can manage their risk by Greek letters analysis.

In this chapter, we will discuss the definitions and derivations of Greek letters. We also 

specifically derive Greek letters for call (put) options on non-dividend stock and 

dividends-paying stock. Some examples are provided to explain the application of Greek 

letters. Finally, we will describe the relationship between Greek letters and the 
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implication in delta neutral portfolio.

30.2 Delta ( )

The delta of an option,  , is defined as the rate of change of the option price respected 

to the rate of change of underlying asset price:

S


 



where  is the option price and S is underlying asset price. We next show the 

derivation of delta for various kinds of stock option.

30.2.1 Derivation of Delta for Different Kinds of Stock Options

From Black-Scholes option pricing model, we know the price of call option on a 

non-dividend stock can be written as:

                    21 dNXedNSC r

tt

 (30.1)

and the price of put option on a non-dividend stock can be written as:
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 N is the cumulative density function of normal distribution.
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(30.4)

Eq. (30.2) and Eq. (30.3) will be used repetitively in determining following Greek letters

when the underlying asset is a non-dividend paying stock.

For a European call option on a non-dividend stock, delta can be shown as

1N(d )  (30.5)

The derivation of Eq. (30.5) is in the following:
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For a European put option on a non-dividend stock, delta can be shown as

                1N ( d ) 1   (30.6)

The derivation of Eq. (30.6) is
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If the underlying asset is a dividend-paying stock providing a dividend yield at rate q, 

Black-Scholes formulas for the prices of a European call option on a dividend-paying 

stock and a European put option on a dividend-paying stock are
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and
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To make the following derivations more easily, we calculate Eq. (30.9) and Eq. (30.10) in 

advance.
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For a European call option on a dividend-paying stock, delta can be shown as
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q
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The derivation of (30.11) is
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For a European call option on a dividend-paying stock, delta can be shown as
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The derivation of (30.12) is
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30.2.2 Application of Delta

Figure 30.1 shows the relationship between the price of a call option and the price of its 

underlying asset. The delta of this call option is the slope of the line at the point of A 
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corresponding to current price of the underlying asset.

Figure 30.1

By calculating delta ratio, a financial institution that sells option to a client can make a 

delta neutral position to hedge the risk of changes of the underlying asset price. Suppose 

that the current stock price is $100, the call option price on stock is $10, and the current 

delta of the call option is 0.4. A financial institution sold 10 call option to its client, so

that the client has right to buy 1,000 shares at time to maturity. To construct a delta hedge 

position, the financial institution should buy 0.4 x 1,000 = 400 shares of stock. If the 

stock price goes up to $1, the option price will go up by $0.4. In this situation, the 

financial institution has a $400 ($1 x 400 shares) gain in its stock position, and a $400 

($0.4 x 1,000 shares) loss in its option position. The total payoff of the financial 

institution is zero. On the other hand, if the stock price goes down by $1, the option price 

will go down by $0.4. The total payoff of the financial institution is also zero.

However, the relationship between option price and stock price is not linear, so delta 

changes over different stock price. If an investor wants to remain his portfolio in delta 

neutral, he should adjust his hedged ratio periodically. The more frequently adjustment he 

does, the better delta-hedging he gets.

Figure 30.2 exhibits the change in delta affects the delta-hedges. If the underlying stock 

has a price equal to $20, then the investor who uses only delta as risk measure will 

consider that his portfolio has no risk. However, as the underlying stock prices changes, 

either up or down, the delta changes as well and thus he will have to use different delta 
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hedging. Delta measure can be combined with other risk measures to yield better risk 

measurement. We will discuss it further in the following sections.

    

Figure 30.2

30.3 Theta ( )

The theta of an option,  , is defined as the rate of change of the option price respected 

to the passage of time:

t


 



where  is the option price and t is the passage of time.

If T t   , theta ( ) can also be defined as minus one timing the rate of change of the 

option price respected to time to maturity. The derivation of such transformation is easy 

and straight forward:

( 1)
t t

   
    

   

where T t   is time to maturity. For the derivation of theta for various kinds of stock 

option, we use the definition of negative differential on time to maturity.



Revised 12/21/2008

9

30.3.1 Derivation of Theta for Different Kinds of Stock Option

For a European call option on a non-dividend stock, theta can be written as:

              
rt s

1 2

S
N (d ) rX e N(d )

2

 
     


(30.13)

The derivation of (30.13) is
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For a European put option on a non-dividend stock, theta can be shown as
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The derivation of (30.14) is
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For a European call option on a dividend-paying stock, theta can be shown as
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

(30.15)

The derivation of (30.15) is
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For a European call option on a dividend-paying stock, theta can be shown as
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(30.16)
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The derivation of (30.16) is
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30.3.2 Application of Theta ( )

The value of option is the combination of time value and stock value. When time passes, 

the time value of the option decreases. Thus, the rate of change of the option price with 

respective to the passage of time, theta, is usually negative.

Because the passage of time on an option is not uncertain, we do not need to make a theta 
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hedge portfolio against the effect of the passage of time. However, we still regard theta as 

a useful parameter, because it is a proxy of gamma in the delta neutral portfolio. For the 

specific detail, we will discuss in the following sections.

30.4 Gamma ( )

The gamma of an option,  , is defined as the rate of change of delta respected to the rate 

of change of underlying asset price::

2

2S S

  
  

 

where  is the option price and S is the underlying asset price.

Because the option is not linearly dependent on its underlying asset, delta-neutral hedge 

strategy is useful only when the movement of underlying asset price is small. Once the 

underlying asset price moves wider, gamma-neutral hedge is necessary. We next show the 

derivation of gamma for various kinds of stock option.

30.4.1 Derivation of Gamma for Different Kinds of Stock Option

For a European call option on a non-dividend stock, gamma can be shown as

                     1

t s

1
N d

S
 

 
(30.17)

The derivation of (30.17) is
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For a European put option on a non-dividend stock, gamma can be shown as

                     1
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 
(30.18)

The derivation of (30.18) is
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For a European call option on a dividend-paying stock, gamma can be shown as

                          
q
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N d
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 

(30.19)

The derivation of (30.19) is
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For a European call option on a dividend-paying stock, gamma can be shown as
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(30.20)

The derivation of (30.20) is
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30.4.2 Application of Gamma ( )

One can use delta and gamma together to calculate the changes of the option due to 

changes in the underlying stock price. This change can be approximated by the following 

relations.

     

21
c h a n g e  i n  o p t i o n  v a l u e c h a n g e  i n  s t o c k  p ri c e ( c h a n g e  i n  s t o c k  p r i c e )

2
      

From the above relation, one can observe that the gamma makes the correction for the 

fact that the option value is not a linear function of underlying stock price. This 

approximation comes from the Taylor series expansion near the initial stock price. If we 

let V be option value, S be stock price, and S0 be initial stock price, then the Taylor series 

expansion around S0 yields the following.
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S S S
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  
       

  

 
     

 

If we only consider the first three terms, the approximation is then,

              

2
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                    ( ) ( )
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 
    

 

     

.

For example, if a portfolio of options has a delta equal to $10000 and a gamma equal to 

$5000, the change in the portfolio value if the stock price drop to $34 from $35 is 

approximately,

     
21

c h a n g e  i n  p o r t f o l i o  v a l u e ( $ 1 0 0 0 0 ) ( $ 3 4 $ 3 5) ( $ 5 0 0 0 ) ( $ 3 4 $ 3 5 )
2

                                       $7500

      

 

The above analysis can also be applied to measure the price sensitivity of interest rate 

related assets or portfolio to interest rate changes. Here we introduce Modified Duration

and Convexity as risk measure corresponding to the above delta and gamma. Modified 

duration measures the percentage change in asset or portfolio value resulting from a 
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percentage change in interest rate.

      

C h a n g e  i n  p r i c e
M o d i f i e d  D u r a t i o n P r i c e

C h a n g e  i n  i n t e r e s t  r a t e

                              / P

 
  
 

 

Using the modified duration,

      
C h a n g e  i n  P o r t f o l i o  V a l u e C h a n g e  i n  i n t e re s t  r a t e

                                       ( P) Change in interest rateDuration

 

   

we can calculate the value changes of the portfolio. The above relation corresponds to the 

previous discussion of delta measure. We want to know how the price of the portfolio 

changes given a change in interest rate. Similar to delta, modified duration only show the 

first order approximation of the changes in value. In order to account for the nonlinear 

relation between the interest rate and portfolio value, we need a second order 

approximation similar to the gamma measure before, this is then the convexity measure. 

Convexity is the interest rate gamma divided by price,

                            / PConvexity  

and this measure captures the nonlinear part of the price changes due to interest rate 

changes. Using the modified duration and convexity together allow us to develop first as 

well as second order approximation of the price changes similar to previous discussion.

            
2

C h a n g e  i n  P o r t f o l i o  V a l u e P ( c h a n g e  i n  r a te)

1
                                            P (change in rate)

2

Duration

Convexity

   

   

As a result, (-duration x P) and (convexity x P) act like the delta and gamma measure 

respectively in the previous discussion. This shows that these Greeks can also be applied 

in measuring risk in interest rate related assets or portfolio.

Next we discuss how to make a portfolio gamma neutral. Suppose the gamma of a 

delta-neutral portfolio is  , the gamma of the option in this portfolio is o , and o is 

the number of options added to the delta-neutral portfolio. Then, the gamma of this new 

portfolio is

o o  
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To make a gamma-neutral portfolio, we should trade *

o o/    options. Because the 

position of option changes, the new portfolio is not in the delta-neutral. We should change 

the position of the underlying asset to maintain delta-neutral.

For example, the delta and gamma of a particular call option are 0.7 and 1.2. A 

delta-neutral portfolio has a gamma of -2,400. To make a delta-neutral and 

gamma-neutral portfolio, we should add a long position of 2,400/1.2=2,000 shares and a 

short position of 2,000 x 0.7=1,400 shares in the original portfolio.

30.5 Vega ( )

The vega of an option,  , is defined as the rate of change of the option price respected to 

the volatility of the underlying asset:


 



where  is the option price and  is volatility of the stock price. We next show the 

derivation of vega for various kinds of stock option.

30.5.1 Derivation of Vega for Different Kinds of Stock Option

For a European call option on a non-dividend stock, vega can be shown as

               t 1S N d    (30.21)

The derivation of (30.21) is
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For a European put option on a non-dividend stock, vega can be shown as

 t 1S N d    (30.22)

The derivation of (30.22) is
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For a European call option on a dividend-paying stock, vega can be shown as

 q

t 1S e N d      (30.23)

The derivation of (30.23) is
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For a European call option on a dividend-paying stock, vega can be shown as

 q

t 1S e N d      (30.24)

The derivation of (30.24) is
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30.5.2 Application of Vega ( )

Suppose a delta-neutral and gamma-neutral portfolio has a vega equal to  and the vega 

of a particular option is o . Similar to gamma, we can add a position of o/  in 

option to make a vega-neutral portfolio. To maintain delta-neutral, we should change the 

underlying asset position. However, when we change the option position, the new 

portfolio is not gamma-neutral. Generally, a portfolio with one option cannot maintain its 

gamma-neutral and vega-neutral at the same time. If we want a portfolio to be both 

gamma-neutral and vega-neutral, we should include at least two kind of option on the 

same underlying asset in our portfolio.

For example, a delta-neutral and gamma-neutral portfolio contains option A, option B, 

and underlying asset. The gamma and vega of this portfolio are -3,200 and -2,500, 

respectively. Option A has a delta of 0.3, gamma of 1.2, and vega of 1.5. Option B has a 

delta of 0.4, gamma of 1.6 and vega of 0.8. The new portfolio will be both gamma-neutral 

and vega-neutral when adding A of option A and B of option B into the original 
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portfolio.

A BGamma Neutral: 3200 1.2 1.6 0     

A BVega Neutral: 2500 1.5 0.8 0     

From two equations shown above, we can get the solution that A =1000 and B = 1250. 

The delta of new portfolio is 1000 x .3 + 1250 x 0.4 = 800. To maintain delta-neutral, we 

need to short 800 shares of the underlying asset.

30.6 Rho (  )

The rho of an option is defined as the rate of change of the option price respected to the 

interest rate:

rho
r





where  is the option price and r is interest rate. The rho for an ordinary stock call 

option should be positive because higher interest rate reduces the present value of the 

strike price which in turn increases the value of the call option. Similarly, the rho of an 

ordinary put option should be negative by the same reasoning. We next show the 

derivation of rho for various kinds of stock option. 

30.6.1 Derivation of Rho for Different Kinds of stock option

For a European call option on a non-dividend stock, rho can be shown as

r

2rho X e N(d )   (30.25)

The derivation of (30.25) is
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For a European put option on a non-dividend stock, rho can be shown as

r

2rho X e N( d )     (30.26)

The derivation of (30.26) is
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For a European call option on a dividend-paying stock, rho can be shown as

r

2rho X e N(d )   (30.27)

The derivation of (30.27) is
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For a European put option on a dividend-paying stock, rho can be shown as

r

2rho X e N( d )     (30.28)

The derivation of (30.28) is
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30.6.2 Application of Rho (  )

Assume that an investor would like to see how interest rate changes affect the value of a 

3-month European put option she holds with the following information. The current stock 

price is $65 and the strike price is $58. The interest rate and the volatility of the stock is 

5% and 30% per annum respectively. The rho of this European put can be calculated as 

following.
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This calculation indicates that given 1% change increase in interest rate, say from 5% to 

6%, the value of this European call option will decrease 0.03168 (0.01 x 3.168). This 

simple example can be further applied to stocks that pay dividends using the derivation 

results shown previously.

30.7 Derivation of Sensitivity for Stock Options Respective with Exercise Price

For a European call option on a non-dividend stock, the sensitivity can be shown as
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The derivation of (30.29) is
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For a European put option on a non-dividend stock, the sensitivity can be shown as
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The derivation of (30.30) is



Revised 12/21/2008

27

2 2
1 1

r rt 2 1
2 t

r r 2 2 1 1
2 t

2 1

d d

r r rt2 2
2 t

s s

r

2

P N( d ) N( d )
e N( d ) Xe S

X X X

(1 N(d )) d (1 N(d )) d
e (1 N(d )) Xe S

d X d X

S1 1 1 1 1 1
e (1 N(d )) Xe e e S e

X X X2 2

e (1 N(d

   

   

 
    

 

    
   

  

     
   

   

     
                         

 

2 2
1 1d d

t t2 2

s s

r

2

S S1 1
)) e e

X X2 2

e N( d )

 

 

   
    
      

 

For a European call option on a dividend-paying stock, the sensitivity can be shown as
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The derivation of (30.31) is
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For a European put option on a dividend-paying stock, the sensitivity can be shown as
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The derivation of (30.32) is
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30.8 Relationship between Delta, Theta, and Gamma

So far, the discussion has introduced the derivation and application of each individual 

Greeks and how they can be applied in portfolio management. In practice, the interaction 

or trade-off between these parameters is of concern as well. For example, recall the 

partial differential equation for the Black-Scholes formula with non-dividend paying 

stock can be written as

                   
2

2 2

2

1

2
rS S r

t S S


   
   

  

Where  is the value of the derivative security contingent on stock price, S is the price 

of stock, r is the risk free rate, and is the volatility of the stock price, and t is the time 

to expiration of the derivative. Given the earlier derivation, we can rewrite the 

Black-Scholes PDE as

2 21

2
rS S r     

This relation gives us the trade-off between delta, gamma, and theta. For example, 

suppose there are two delta neutral ( 0)  portfolios, one with positive gamma 

( 0)  and the other one with negative gamma ( 0)  and they both have value of $1 

( 1)  . The trade-off can be written as

2 21

2
S r  

For the first portfolio, if gamma is positive and large, then theta is negative and large. 
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When gamma is positive, change in stock prices result in higher value of the option. This 

means that when there is no change in stock prices, the value of the option declines as we 

approach the expiration date. As a result, the theta is negative. On the other hand, when 

gamma is negative and large, change in stock prices result in lower option value. This 

means that when there is no stock price changes, the value of the option increases as we 

approach the expiration and theta is positive. This gives us a trade-off between gamma 

and theta and they can be used as proxy for each other in a delta neutral portfolio. 

30.9 Conclusion

In this chapter we have shown the derivation of the sensitivities of the option price to the

change in the value of state variables or parameters. The first Greek is delta ( ) which is 

the rate of change of option price to change in price of underlying asset. Once the delta is 

calculated, the next step is the rate of change of delta with respect to underlying asset 

price which gives us gamma ( ). Another two risk measures are theta ( ) and rho (  ), 

they measure the change in option value with respect to passing time and interest rate 

respectively. Finally, one can also measure the change in option value with respect to the 

volatility of the underlying asset and this gives us the vega ( v ). 

The relationship between these risk measures are shown, one of the example can be seen 

from the Black-Scholes partial differential equation. Furthermore, the applications of 

these Greeks letter in the portfolio management have also been discussed. Risk 

management is one of the important topics in finance today, both for academics and 

practitioners. Given the recent credit crisis, one can observe that it is crucial to properly 

measure the risk related to the ever more complicated financial assets.
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